75 lines
2.3 KiB
Java
75 lines
2.3 KiB
Java
package pmml;
|
|
|
|
import com.fibo.ddp.common.service.strategyx.aimodel.PMMLExecutor.PMMLExecutor;
|
|
import com.fibo.ddp.common.service.strategyx.aimodel.PMMLExecutor.impl.PMMLExecutorRFImpl;
|
|
import org.jpmml.evaluator.InputField;
|
|
import org.jpmml.evaluator.OutputField;
|
|
import org.jpmml.evaluator.TargetField;
|
|
|
|
import java.util.HashMap;
|
|
import java.util.List;
|
|
import java.util.Map;
|
|
|
|
public class PmmlTest {
|
|
|
|
public static void main(String[] args)throws Exception{
|
|
|
|
PMMLExecutor pmmlExecutor = new PMMLExecutorRFImpl();
|
|
String file = "/Users/dugang/work/2025/risk/fibo-rule/ddp/ddp-runner-api/src/test/resources/demo001.pmml";
|
|
// 加载模型文件
|
|
org.jpmml.evaluator.Evaluator evaluator = pmmlExecutor.loadPmml(file);
|
|
|
|
|
|
System.out.println("summary="+ evaluator.getSummary());
|
|
|
|
List<InputField> inputFields = evaluator.getInputFields();
|
|
System.out.println("inputFields.size="+inputFields.size());
|
|
for(InputField item:inputFields){
|
|
System.out.println(item);
|
|
}
|
|
List<InputField> activeFields = evaluator.getActiveFields();
|
|
System.out.println("activeFields.size="+activeFields.size());
|
|
for(InputField item:activeFields){
|
|
System.out.println(item);
|
|
}
|
|
|
|
List<TargetField> targetFields = evaluator.getTargetFields();
|
|
System.out.println("targetFields.size="+targetFields.size());
|
|
for(TargetField item:targetFields){
|
|
System.out.println(item);
|
|
}
|
|
List<OutputField> outputFields = evaluator.getOutputFields();
|
|
System.out.println("outputFields.size="+outputFields.size());
|
|
for(OutputField item:outputFields){
|
|
System.out.println(item);
|
|
}
|
|
|
|
|
|
|
|
|
|
Map<String, Object> input = new HashMap<>();
|
|
input.put("x1",1.0);
|
|
input.put("x2",2.0);
|
|
|
|
double modelResult = pmmlExecutor.predict(evaluator, input);
|
|
|
|
System.out.println("modelResult="+modelResult);
|
|
|
|
|
|
input.put("x1","1.0");
|
|
input.put("x2","2.0");
|
|
modelResult = pmmlExecutor.predict(evaluator, input);
|
|
System.out.println("modelResult="+modelResult);
|
|
|
|
input.put("x1","1.7");
|
|
input.put("x2","2.1");
|
|
modelResult = pmmlExecutor.predict(evaluator, input);
|
|
System.out.println("modelResult="+modelResult);
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
}
|